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Introduction 
The human CACNA1A gene encodes the α1 subunit of neuronal 

voltage-gated CaV2.1 (P/Q-type) calcium channels. Furthermore, 
CACNA1A is the locus of several genetic neurological diseases, 
including Episodic Ataxia type 2 (EA2), spinocerebellar ataxia type 6 
(SCA6), familial hemiplegic migraine type 1 (FHM1) and rare forms 
of epilepsy [1-4]. 

Multiple mouse strains exist that carry mutations in the orthologous 
mouse Cacna1a gene, including Rolling Nagoya (tgrol), Tottering (tg) and 
Leaner (tgla); these strains arose spontaneously and exhibit phenotypes 
of cerebellar ataxia often paired with absence epilepsy and/or other 
motor phenotypes such as dyskinesia and dystonia [5-7]. Furthermore, 
transgenic knock-in (KI) mouse models have been generated to harbor 
the human FHM1 missense mutations R192Q and S218L in the 
Cacna1a gene [8,9]. 

The tgrol mouse carries the R1262G mutation that results in a 
phenotype of pure cerebellar ataxia [6,10]. At the functional level, the 
mutation results in a loss-of-function phenotype withCaV2.1 channels 
exhibiting a positive shift of the activation voltage and reduced current 
density both in recombinant expression systems and primary culture 
cerebellar Purkinje cells from tgrol mice [11]. A similar loss-of-function 
synaptic phenotype was reported for the neuromuscular junction [12]. 

Numerous studies have investigated anatomy and morphology 
of the tgrol brain and expression and distribution of neurotransmitter 
receptors in the tgrol nervous system [10]. However, there is still 
a controversy regarding the presence and/or extent of cerebellar 
morphological abnormalities as well as the contribution of striatal 
dysfunction to the ataxic phenotype of tgrol [13,14]. 

The rationale for the present study is based on the functional link 
between neuronal Ca2+ influx and GABAA receptor subunit expression 

[15-19]. In the cerebellum, the loss of GABAergic inhibition may 
decrease tonic inhibition in cerebellar granule cells (CGCs), leading 
to ataxia in Angelman syndrome [20]. Similarly, an aberrant GABAAR 
complement may contribute to the ataxic phenotype of tg, tgla and tgrol 
mice [21-23]. 

Given the abundant expression of CaV2.1 channels in the cerebrum, 
it was hypothesized that functional GABAA receptor subunit expression 
may be altered in the forebrain of tgrol mice. Functional GABAA 
receptors in the forebrain of tgrol were subsequently quantified and 
pharmacologically dissociated using [3H] radioligand binding. 

Materials and Methods
Tissue

Tissue from Rolling Nagoya mice was kindly provided by Drs. Jaap 
Plomp and Arn van den Maagdenberg (Leiden University Medical 
Center, Leiden, The Netherlands). 

[3H] Radioligand binding assays

[3H] Radioligand binding was essentially performed as described 
previously [23]. Mice were euthanized by cervical dislocation and 
forebrain (without olfactory bulb) and cerebellum were dissected 
into 0.1 M ice-cold phosphate buffered saline (pH 7. r [3H] muscimol 
binding, 50 mM Tr 4) and snap frozen in liquid nitrogen. Tissue was 
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a positive shift of the activation voltage of the CaV2.1 channel and reduced current density. γ-Aminobutyric acid type 
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pattern of CaV2.1, it was hypothesized that calcium dysregulation in tgrol might affect GABAA receptor expression in 
the forebrain. Herein, functional GABAA receptors in the forebrain of tgrol mice were quantified and pharmacologically 
dissociated using [3H] radioligand binding. No gross changes to functional GABAA receptors were identified. Future cell 
type-specific analyses are required to identify possible cortical contributions to the psychomotor phenotype of tgrol mice. 
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thawed on ice in 50 volumes assay buffer (50 mM Tris-citrate pH 7.3 
for [3H] muscimol binding, 50 mM Tris-HCl pH 7.4 for [3H] Ro15-
4513 and [3H] Ro15-1788 binding). Samples were homogenized in 
a Dounce tissue grinder and centrifuged at 750×g for 10 min at 4˚C. 
Supernatants were subsequently centrifuged at 45,000Xg for 30 min, 
the pellet was washed in 50 volumes assay buffer and re-homogenized. 
In order to release endogenous neurotransmitter, tissue was incubated 
for 30 min in 37°C water bath and re-centrifuged. The pellet was then 
resuspended in 50 volumes assay buffer, flash frozen in liquid nitrogen 
and stored overnight at -20°C. Immediately prior to experiments, 
tissue was thawed in a waterbath at ambient temperature, centrifuged 
and the pellet resuspended 200-fold for [3H] muscimol experiments 
and 500-fold for [3H] R015-4513 and [3H] Ro15-1788 binding. 
Protein concentrations of membrane preparations were determined 
by the method of Lowry [24] employing bovine serum albumin as the 
standard protein for calibration. 

Data analysis and statistics

Data throughout this manuscript is presented as mean ± s.e.m. Data 
was analyzed in SigmaPlot v10 (Systat Software, Inc., San Jose, CA) using 
the one-binding site regression tool with 200 iterations. Overall Bmax and 
KD values were obtained by calculating the mean values obtained from 
each individual animal. Rosenthal transformations were performed on 
radioligand binding data and plotted as Scatchard plots for illustration 
purposes only [23,25,26]. Statistically significant differences were tested 
for using Student’s t-tests, as appropriate. Statistical significance was 
defined as P<0.05. 

Results
[3H] Muscimol binding

In order to determine the total number of functional GABA 
binding sites expressed on forebrain membranes, [3H] muscimol 
binding was performed. Fitting the binding curve using a single 
binding-site equation revealed no statistically significant difference 
between the Bmax of wt and tgrol mice (n=4, P=0.70) (Figures 1A and C). 
Rosenthal transformations of the data are presented as Scatchard plot 
for illustration (Figure 1B). The KD values for [3H] muscimol binding 
were similar between genotypes (n=4, P=0.73) (Figure 1D). 

[3H] Ro15-4513 and [3H] flumazenil binding

Next, benzodiazepine receptor binding, identifying γ2 subunit-
containing GABAA receptors, was quantified using [3H] Ro15-4513 and 
[3H] flumazenil. Total [3H] Ro15-4513 binding was similar between wt 
and tgrol forebrain membranes (n=4, P=0.56) (Figures 2A-C). Binding 
affinity, expressed as KD, was not statistically significantly different 
between genotypes (n=4, P=0.10) (Figure 2D). In order to address 
the possibility of subunit changes, benzodiazepine-insensitive (BZ-IS) 
and benzodiazepine-sensitive (BZ-S) binding sites were differentiated 
pharmacologically (Figures 2E-H). BZ-IS binding was quantified in 
the presence of 10 µM flunitrazepam (Figure 2E). Bmax and KD values 
did not differ between wt and tgrol (n=4, P=0.92) (Figures 2G and H). 
Subsequently, BZ-S binding could be calculated mathematically by 
subtracting BZ-IS binding from total binding (Figure 2F). 

Lastly, [3H] flumazenil (Ro15-1788) binding to forebrain 
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Figure 1: [3H] Muscimol binding.
(A) [3H] Muscimol binding to wt and tgrol forebrain membrane homogenates was similar when fitted to a one-site binding curve. (B) Rosenthal transformation was 
carried out and the Scatchard plot is shown. (C) Bmax values were not statistically significant different between wt and tgrol. Individual values were obtained from fitting 
a binding curve against the forebrain sample of a single animal. (D) Similarly, no differences in KD value were obtained. 
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membranes was quantified. No differences in Bmax (n=4, P=0.95) and 
KD (n=4, p=0.20) were identified (Figures 3A-D).

Discussion
In this study, GABAA receptor binding sites in the cerebrum 

of wt and tgrol mice were quantified by [3H] ligand binding. We 
utilized highly selective, well-established GABAA receptor ligands to 
investigate GABAA receptor pharmacology in forebrain membranes of 
the Cacna1a mutant tgrol and wt littermate control. In rapid filtration 
assays, muscimol recognizes all GABAARs. In forebrain membranes, 
the major GABAA receptor comprises α1β2γ2 subunit, accounting 
for approximately 50% of all GABAA receptors [27,28]. [3H] Ro15-
4513 and [3H] flumazenil (Ro15-1788) were used as ligands for the 
benzodiazepine binding site of GABAARs and to identify γ2 subunit-
containing receptors [29,30]. Specificity of ligands was confirmed by 
using 10-fold excess concentrations of unlabeled ligands to displace 
[3H] ligands (data not shown), as described previously [23]. Rapid 
filtration assays did not reveal any differences between the number and 
pharmacology of functional GABAA receptors in forebrain membranes 
of wt and tgrol mice. The Bmax and KD values obtained for GABAA 
receptor binding were similar to those reported previously [31,32]. At 
the molecular level, the tgrol mutation (R12642) is located in the domain 
III voltage-sensor region of the CaV2.1 protein and results in a positive 
shift of the activation voltage of the channel and overall reduced 
current density of the P/Q-type current [11], thought to result in 
impaired neurotransmission and transmitter secretion [10,12]. CaV2.1 
channels are distributed widely throughout the mammalian central 
nervous system [33]. The rationale for this study was derived from the 

regulation of GABAA receptor subunits by Ca2+ influx [15-19] and that 
striatal dysfunction contributing to ataxia may result from GABAergic 
changes in the forebrain. 

There could be several reasons for the absence of GABAA receptor 
abnormalities in the forebrain in the presence of the tgrol mutation: 
1) Compensatory Ca2+ channel expression may restore intracellular 
Ca2+ signaling leading to normal Ca2+ influx. Unfortunately, there is 
no data available to date to support or reject this hypothesis. At the 
neuromuscular junction, where CaV2.1 channels are the exclusive 
mediators of acetylcholine release, no compensatory Ca2+ channel 
expression was found [23]. 2) Region and/or cell type-specific changes 
may be occluded when quantifying binding to membrane preparations. 
Future studies employing autoradiography are needed to confirm our 
results presented herein. 3) Effects of Cacna1a mutations are dependent 
critically on the specific splice isoform of the CaV2.1 channel. For 
instance, FHM1 mutations in Cacna1a exhibit greater hyperpolarizing 
shifts in voltage-dependence when expressed in the short (CaV2.1Δ47) 
versus the long C-terminal variant (CaV2.1+47) [34]. Cerebellar splice 
variants may be more susceptible to the effects of the tgrol mutation 
and results in disruption of Ca2+ signaling and thus cause the ensuing 
cerebellar GABAA receptor dysfunction in tgrol mice [21]. 

In conclusion, we did not identify any gross changes in GABAA 
receptor pharmacology and expression in the forebrain of tgrol mice. 
Future cell type-specific analyses are required to confirm cortical 
contributions to the psychomotor phenotype of tgrol mice. 
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Figure 2: [3H] Ro15-4513 binding.
(A) Total [3H] Ro15-4513 binding was not affected by the tgrol mutation in Cacna1a. (B) Rosenthal transformation was carried out and the Scatchard plot is shown. 
(C) Bmax values did not differ between wt and tgrol. (D) Similarly, KD values were similar between wt and tgrol. (E) [3H] Ro15-4513 binding in the presence of 10 μM 
flunitrazepam defined BZ-IS binding sites did not differ between genotypes. (F) BZ-S [3H] Ro15-4513 binding was determined by subtraction of the estimated number 
of BZ-IS binding sites from total [3H] Ro15-4513 specific binding sites were similar between wt and tgrol mice. (G-H) Bmax and KD values did not differ between wt and 
tgrol mice. 
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Figure 3: [3H] Flumazenil (Ro15-1788) binding.
(A) [3H] Flumazenil binding did not reveal any quantitative differences between binding to wt and tgrol forebrain membrane homogenates. (B) Scatchard plot is shown 
for illustration. (C-D) Bmax and KD values did not differ between wt and tgrol mice. 
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